Search results for "decomposition-based MOEA"

showing 2 items of 2 documents

An Interactive Framework for Offline Data-Driven Multiobjective Optimization

2020

We propose a framework for solving offline data-driven multiobjective optimization problems in an interactive manner. No new data becomes available when solving offline problems. We fit surrogate models to the data to enable optimization, which introduces uncertainty. The framework incorporates preference information from a decision maker in two aspects to direct the solution process. Firstly, the decision maker can guide the optimization by providing preferences for objectives. Secondly, the framework features a novel technique for the decision maker to also express preferences related to maximum acceptable uncertainty in the solutions as preferred ranges of uncertainty. In this way, the d…

050101 languages & linguisticsDecision support systemMathematical optimizationOptimization problemdecision supportComputer scienceEvolutionary algorithmGaussian processespäätöksentukijärjestelmät02 engineering and technologyMulti-objective optimizationdecision makingData-driven0202 electrical engineering electronic engineering information engineeringmetamodelling0501 psychology and cognitive sciencessurrogateInteractive visualization05 social sciencesgaussiset prosessitmonitavoiteoptimointiMetamodelingKriging020201 artificial intelligence & image processingdecomposition-based MOEAkriging-menetelmäCognitive load
researchProduct

Interactive evolutionary multiobjective optimization with modular physical user interface

2022

© 2022 Copyright held by the owner/author(s). Incorporating the preferences of a domain expert, a decision-maker (DM), in solving multiobjective optimization problems increased in popularity in recent years. The DM can choose to use different types of preferences depending on his/her comfort, requirements, or the problem being solved. Most papers, where preference-based and interactive algorithms have been proposed, do not pay attention to the user interfaces and input devices. If they do, they use character or graphics-based preference input methods. We propose the option of using a physical or tactile input device that gives the DM a better sense of control over providing his/her preferen…

decision supportpäätöksentekotactile interfacepäättäjäthuman machine interfacepäätöksentukijärjestelmätohjaimetpreference informationmonitavoiteoptimointikäyttöliittymätalgoritmitihminen-konejärjestelmätinteraktiivisuusmulticriteria decision makingdecomposition-based MOEAtietojärjestelmätProceedings of the Genetic and Evolutionary Computation Conference Companion
researchProduct